
J
H
E
P
0
6
(
2
0
0
7
)
0
2
3

Published by Institute of Physics Publishing for SISSA

Received: March 22, 2007

Accepted: May 29, 2007

Published: June 6, 2007

Level-rank duality of the U(N) WZW model,

Chern-Simons theory, and 2d qYM theory

Stephen G. Naculich∗

Department of Physics, Bowdoin College,

Brunswick, ME 04011, U.S.A.

E-mail: naculich@bowdoin.edu

Howard J. Schnitzer†

Theoretical Physics Group, Martin Fisher School of Physics, Brandeis University,

Waltham, MA 02454, U.S.A.

E-mail: schnitzr@brandeis.edu

Abstract: We study the WZW, Chern-Simons, and 2d qYM theories with gauge group

U(N). The U(N) WZW model is only well-defined for odd level K, and this model is

shown to exhibit level-rank duality in a much simpler form than that for SU(N). The

U(N) Chern-Simons theory on Seifert manifolds exhibits a similar duality, distinct from

the level-rank duality of SU(N) Chern-Simons theory on S3. When q = e2πi/(N+K), the

observables of the 2d U(N) qYM theory can be expressed as a sum over a finite subset of

U(N) representations. When N and K are odd, the qYM theory exhibits N ↔ K duality,

provided q = e2πi/(N+K) and θ = 0 mod 2π/(N + K).

Keywords: Field Theories in Lower Dimensions, Topological Field Theories,

Chern-Simons Theories, Conformal and W Symmetry.

∗Research supported in part by the NSF under grant PHY-0456944.
†Research supported in part by the DOE under grant DE–FG02–92ER40706.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep062007023/jhep062007023.pdf

mailto:naculich@bowdoin.edu
mailto:schnitzr@brandeis.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
7
)
0
2
3

Contents

1. Introduction 1
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1. Introduction

While two-dimensional (Yang-Mills and Wess-Zumino-Witten) and three-dimensional

(Chern-Simons) gauge theories have typically been analyzed using simple gauge groups,

for some purposes it is more natural to consider these theories with gauge group U(N) =

[SU(N) × U(1)]/ZZN .

The proposed relation [1] between BPS black hole microstates and topological string

theory amplitudes was illustrated in refs. [2, 3] by computing bound states of D-branes on a

manifold that is locally a fibration over a Riemann surface Σg. The D4-brane worldvolume

gauge theory reduces in this case to a two-dimensional q-deformed Yang-Mills (qYM) theory

on Σg with gauge group U(N), which was studied in refs. [4]–[10]. As we will demonstrate

in this paper, the U(N) qYM theory has the interesting feature — not shared by the qYM

theory with gauge group SU(N) — that, when q = e2πi/(N+K), its partition function is

given by a sum restricted to a finite subset of U(N) representations, namely, those with
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Young tableaux with no more than K columns. Consequently, the 2d U(N) qYM theory

exhibits an N ↔ K duality akin to level-rank duality of WZW models [11]–[14].

U(N) also plays a more natural role than SU(N) in large-N dualities of Chern-Simon

theories [15], as pointed out in ref. [16]. The U(N) Chern-Simons theory also has a natural

realization in terms of free fermions [17]. More recently, Chern-Simons theory on Seifert

manifolds (circle bundles over Σg) has received attention [18, 7, 9]. In this paper, we

will show that level-K U(N) Chern-Simons theory on certain Seifert manifolds exhibits an

N ↔ K duality (for odd N and K) that is distinct from the N ↔ K duality that holds for

SU(N) Chern-Simons theory on S3 [13, 19]–[22].

Both of the above-mentioned N ↔ K dualities flow from the level-rank duality of

the Wess-Zumino-Witten model with gauge group U(N), which is explored in detail in

this paper. The U(N) WZW model has received much less attention than WZW models

based on simple gauge groups, although its fusion rule algebra was explored in ref. [23],

and also in ref. [24] in connection with the quantum cohomology of the Grassmannian.

In several respects, level-rank duality is much simpler for U(N) than for SU(N), and

closely resembles that for Sp(n). For example, level-rank duality of the SU(N) WZW

model involves a 1-1 map between cominimal equivalence classes (simple-current orbits)

of integrable representations, whereas for U(N) the map is between the representations

themselves.

The affine Lie algebra of the U(N) WZW model is the quotient of ŝu(N)K × û(1)K ′

by ZZN . To realize the U(N) symmetry, the levels of the factor groups must be related

by K ′ = N(K + N), and moreover, the level K must be odd [23]. As we will show in

section 2, the primary fields of the û(N)K,N(K+N) WZW model (for K odd) are in one-

to-one correspondence with Young tableaux with at most N rows and K columns,1 and

the affine characters of these fields are infinite sums of characters of ŝu(N)K × û(1)K ′ . By

considering modular transformations of these affine characters, we derive the form of the

S and T matrices for û(N)K,N(K+N).

In section 3, we demonstrate level-rank duality between the û(N)K,N(K+N) and

û(K)N,K(K+N) WZW models (with N and K odd so that both theories are defined) and

show the similarity to the duality between ŝp(n)k and ŝp(k)n. In section 4, we use formulas

derived from surgery on knots to demonstrate level-rank duality of observables of U(N)

(and also Sp(n)) Chern-Simons theory on a certain class of Seifert manifolds. In section

5, we show that the partition function of 2d q-deformed U(N) Yang-Mills theory can be

expressed, when q = e2πi/(N+K), as a sum over a truncated set of U(N) representations.

When K is odd, the observables (partition function, Wilson line expectation values) can be

further expressed in terms of modular transformation matrices of the û(N)K,N(K+N) WZW

model. Consequently, when N and K are odd, the U(N) qYM theory exhibits N ↔ K

duality, provided q = e2πi/(N+K) and θ = 0 mod 2π/(N + K).

2. The û(N)K,N(K+N) WZW model

This section is devoted to an analysis of the representations of the U(N) WZW model,

1Integrable representations of bsu(N)K have Young tableaux with at most N − 1 rows and K columns.
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their affine characters and modular transformation matrices. The U(N) WZW model was

previously studied in the context of its fusion rule algebra in refs. [23, 24].

The chiral algebra of the U(N) WZW model is the quotient of ŝu(N)K × û(1)K ′ by

ZZN . To realize the U(N) symmetry, the levels of the ŝu(N)K and û(1)K ′ subalgebras

must be related; the relation between K and K ′ may be determined by requiring that the

conformal weight of the representation (R,Q) of ŝu(N)K × û(1)K ′ be proportional to the

u(N) Casimir (A.5)

h(R,Q) = hR + h′
Q =

1
2C2(R)

K + N
+

Q2

2K ′
=

1
2C2(R,Q)

K + N
(2.1)

which implies that [23, 24]

K ′ = N(K + N) . (2.2)

(See the appendix for results and conventions for finite-dimensional and affine Lie algebras.)

We will therefore denote the algebra of the U(N) WZW model as

û(N)K,N(K+N) ≡ [ŝu(N)K × û(1)N(K+N)]/ZZN . (2.3)

2.1 Representations of û(N)K,N(K+N)

As in the case of the finite-dimensional u(N) algebra (see the appendix), representations

(R,Q) of û(N)K,N(K+N) must satisfy

Q = r mod N (2.4)

where r is the number of boxes of the Young tableau associated with R, but in addition

we must impose [25, 23, 24] the equivalence relation

(R,Q) ≃ (σ(R), Q + N + K) (2.5)

where σ is the simple current of ŝu(N)K , defined in the appendix. The identification (2.5) is

necessary in order that the condition (2.4) be preserved under the modular transformation

τ → −1/τ . For the affine characters to be well-defined under τ → τ + 1, moreover, the

conformal weights of equivalent representations must differ by integers. Using eq. (A.14),

one finds that

h(σ(R),Q+N+K) − h(R,Q) =
2Q − 2r + NK + N

2N
= s +

1

2
(K + 1) (2.6)

which is integer-valued if and only if K is odd [23]. Hence, the WZW model with chi-

ral algebra û(N)K,N(K+N) is only well-defined for odd values of K, which we henceforth

assume.2

As a result of the equivalence relation (2.5), the number of primary fields of

û(N)K,N(K+N) becomes finite, so the û(N)K,N(K+N) WZW model is a rational confor-

mal field theory. To determine the number of primaries, we iterate eq. (2.5) N times and

use σN = 1 to obtain the equivalence

(R,Q) ≃ (R,Q + N(N + K)) . (2.7)

2As another example of such a restriction, the WZW model with chiral algebra SO(3) is only well-defined

when the level is a multiple of four [26, 25, 27].
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Hence Q may be restricted to the range 0 ≤ Q < N(N + K). From this, we determine the

number of primary fields of û(N)K,N(K+N) to be

(
N + K − 1

K

)
N(N + K)

N2
=

(
N + K

K

)
(2.8)

where
(

N+K−1
K

)
is the number of integrable highest-weight ŝu(N)K representations, N(N+

K) is the range of Q, and the constraint (2.4) and identification (2.5) each reduce the

number of distinct fields by a factor of N . (There are no fixed points or short orbits of the

equivalence relation.) The result (2.8) was also obtained in the context of Chern-Simons

theory in ref. [17]. We emphasize, however, that this argument is only valid for odd values

of K, where it is possible to impose the equivalence relation (2.5).

As explained in the appendix, u(N) representations (R,Q) may be characterized by

extended Young tableaux R with row lengths ℓ̄i ∈ ZZ (i = 1, . . . , N). It is straightforward

to prove that, within each equivalence class of representations under (2.5), there is exactly

one whose extended tableau R satisfies 0 ≤ ℓ̄N ≤ · · · ≤ ℓ̄1 ≤ K. Hence, the primary fields

of û(N)K,N(K+N) (where K is odd) are in one-to-one correspondence with Young tableaux

R with no more than N rows and K columns.3 The number of such tableaux is
(

N+K
N

)
,

in agreement with eq. (2.8).

2.2 Affine characters and modular transformation matrices of û(N)K,N(K+N)

The affine character for the representation (R,Q) of ŝu(N)K × û(1)K ′ is given by the

product of eqs. (A.11) and (A.18),

χ(R,Q)(τ) = χR(τ)χ′
Q(τ) . (2.9)

The primary fields of û(N)K,N(K+N), however, are characterized as equivalence classes

of representations (R,Q) under the identification (2.5), so the affine character4 of the

û(N)K,N(K+N) representation R is given by the following sum of ŝu(N)K × û(1)N(K+N)

characters

χR(τ) =
∑

n∈ZZ

χ(σn(R),Q+n(N+K))(τ)

=
N−1∑

n=0

∑

t∈ZZ

χσn(R)(τ)χ′
Q+(N+K)Nt+(N+K)n(τ)

=
1

η(τ)

N−1∑

n=0

χσn(R)(τ)ΘQ+(N+K)n,N(N+K)/2(τ) (2.10)

3This is also the conclusion of ref. [10], although the restriction to odd K is not mentioned.
4Whereas we are considering the basic specialization of the affine characters, Frenkel [28] considered the

principally-specialized characters of u(N), but without imposing the identification (2.5). He demonstrated

the invariance of these characters under transposition of tableaux and N ↔ K. Historically, this was one

of the first manifestations of level-rank duality.
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where N(N + K)/2 is integer-valued since K must be odd, and

ΘQ,L(τ) ≡
∑

t∈ZZ

e2πiτL(t+Q/2L)2 . (2.11)

Using the modular transformation property of the theta function

ΘQ,L

η

(
−1

τ

)
=

2L−1∑

Q′=0

e−πiQQ′/L

√
2L

ΘQ′,L

η
(τ) (2.12)

together with eqs. (A.12) and (A.15), one finds

χR(−1/τ) =
1

η(τ)

∑

R′

N(N+K)−1∑

Q′=0

[
N−1∑

n=0

e2πin(r′−Q′)/N

]

×SRR′

e−2πiQQ′/N(N+K)

√
N(N + K)

χR′(τ)ΘQ′,N(N+K)/2(τ) . (2.13)

The sum in brackets vanishes unless Q′ = r′ mod N , so we may restrict the sum over Q′

to obey this constraint

χR(−1/τ) =
1

η(τ)

∑

R′

∑

0≤Q′<N(N+K)

Q′=r′ mod N

NSRR′

e−2πiQQ′/N(N+K)

√
N(N + K)

χR′(τ)ΘQ′,N(N+K)/2(τ)

=
1

η(τ)

∑

R′

∑

0≤Q′<N(N+K)

Q′=r′ mod N

SRR′

e−2πiQQ′/N(N+K)

√
N(N + K)

×
N−1∑

n′=0

χσn′ (R′)(τ)ΘQ′+(N+K)n′,N(N+K)/2(τ)

=
∑

R′

SRR′

Ne−2πiQQ′/N(N+K)

√
N(N + K)

χR′(τ) (2.14)

where in the second line, we have used eq. (A.15) together with Q = r mod N . The factor

of N in the last line arises because each primary field R′ corresponds to N distinct values

of (R′, Q′) satisfying 0 ≤ Q′ < N(N + K) and Q′ = r′ mod N . From eq. (2.14), we read

off the modular transformation matrix for the û(N)K,N(K+N) characters

SRR′ =

√
N

N + K
SRR′e−2πiQQ′/N(N+K) . (2.15)

(In order not to unduly clutter the notation, we let the subscripts R or R indicate whether

the modular transformation matrix refers to ŝu(N)K or û(N)K,N(K+N) respectively.) In

ref. [23], the quantity SRR′ was obtained in a different way by specializing the u(N) Weyl

character. This alternative approach allows one to formally define SRR′ when K is not

odd, or even when K is not a real number [6], but in that case SRR′ does not represent the

transformation matrix of affine characters under τ → −1/τ . The phase factor in eq. (2.15)
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was obtained in ref. [16] in the context of U(N) Chern-Simons theory, where SRR′ represents

the expectation value of the Wilson line of the Hopf link on S3 with canonical framing.

The modular transformation matrix of û(N)K,N(K+N) characters (2.10) under τ →
τ + 1 is

TRR′ = exp
[
2πi

(
hR − c

24

)]
δRR′ (2.16)

where from (2.1) we have

hR =
1
2C2(R)

K + N
(2.17)

and

c =
K(N2 − 1)

K + N
+ 1 =

N(NK + 1)

K + N
. (2.18)

Note that TRR′ is only well-defined when K is odd because, when K is even, the conformal

weight hR of the character (2.10) is not well-defined modulo ZZ.

3. Level-rank duality of the û(N)K,N(K+N) WZW model

In the previous section, we showed that the WZW model with affine Lie algebra

û(N)K,N(K+N) is only well-defined for odd values of K, for which the equivalence rela-

tion (2.5) may be consistently imposed. Throughout this section, we restrict ourselves to

odd values of N and K, so that both û(N)K,N(K+N) and û(K)N,K(K+N) are well-defined.

Primary fields of û(N)K,N(K+N), which are characterized (for K odd) by Young

tableaux R with no more than N columns and K rows, are in one-to-one correspondence5

with the primary fields of û(K)N,K(K+N) under transposition of R. (The number
(

N+K
K

)

of such tableaux is manifestly invariant under N ↔ K.) In terms of representations of

ŝu(N)K × û(1)N(K+N) and ŝu(K)N × û(1)K(K+N), the correspondence is

R = (R,Q) → R̃ = (σs(R̃), Q), s =
Q − r

N
. (3.1)

The conformal weights of level-rank-dual primary fields satisfy

hR + h̃ eR =
1

2
Q . (3.2)

This follows from eqs. (2.17) and (A.7) and the fact that T (R) = −T (R̃), which becomes

evident when we rewrite eq. (A.8) as

T (R) =
∑

ℓ̄ 2
i −

∑
k̄2

j (3.3)

where ℓ̄i and k̄j are the row and column lengths, respectively, of R.

From eq. (2.18), we have that the central charges of the level-rank-dual theories are

related by

c + c̃ = NK + 1 . (3.4)

5This is simpler than level-rank duality between the bsu(N)K and bsu(K)N WZW models [11]–[14], in

which case the correspondence is one-to-one between simple-current orbits of primary fields.
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Together with eq. (3.2) this implies that

T̃ eR eR = (−)Qe−πi(KN+1)/12 T ∗
RR (3.5)

where T and T̃ are the modular transformation matrices (2.16) for û(N)K,N(K+N) and

û(K)N,K(K+N) respectively.

The S modular transformation matrix of û(K)N,K(K+N) may be obtained using

eqs. (2.15) and (3.1),

S̃ eR eR′ =

√
K

K + N
S̃

σs( eR)σs′ ( eR′)
e−2πiQQ′/K(N+K) . (3.6)

Equation (A.15) implies

S̃σs( eR)σs′ ( eR′) = e2πisQ′/K S̃ eRσs′ ( eR′) , S̃ eRσs′ ( eR′) = e2πis′r/K S̃ eR eR′ . (3.7)

Finally, under level-rank duality, the ŝu(N)K and ŝu(K)N modular transformation matri-

ces6 S and S̃ are related by [12, 13]

S̃ eR eR′ =

√
N

K
e2πirr′/NKS∗

RR′ (3.8)

which, together with the previous equations, yields the much simpler level-rank relation

S̃ eR eR′ = S∗
RR′ (3.9)

between the û(N)K,N(K+N) and û(K)N,K(K+N) modular transformation matrices S and S̃.

Equation (3.9) has the immediate consequence, via the Verlinde formula [29], that the

fusion coefficients of û(N)K,N(K+N) are level-rank dual:

Ñ
eR′′

eR eR′
= N R′′

RR′ . (3.10)

Duality of the fusion coefficients also follows, as shown in ref. [24], from the symmetry of

the Grassmannian G(N,N + K) ≃ G(K,N + K).

3.1 Level-rank duality of the ŝp(n)k WZW model

We note that the level-rank duality of the û(N)K,N(K+N) WZW model is very similar to

level-rank duality of the ŝp(n)k WZW model [13], where n = rank sp(n). In the case of

ŝp(n)k, integrable highest-weight representations are characterized by Young tableaux R

with no more than n rows and k columns, with the level-rank dual representation given by

the transpose of R. The relations [13] between the central charges and conformal weights

of ŝp(n)k and ŝp(k)n representations

c + c̃ = 2nk, hR + h̃ eR =
1

2
r (3.11)

and between the modular transformation matrices

S̃ eR eR′ = SRR′ , T̃ eR eR = (−)re−πink/6T ∗
RR (3.12)

are quite similar to those derived above for û(N)K,N(K+N).

6The modular matrix S here differs from that given in ref. [13] by complex conjugation.
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4. Chern-Simons theory and level-rank duality

Because of the close connection between WZW models in two dimensions and Chern-Simons

gauge theory in three dimensions [30] (see ref. [31] for a review), level-rank duality of WZW

models has implications for Chern-Simons theory as well [13, 19]–[22].

Since Chern-Simons theory is a topological field theory, its observables are topological

invariants of the 3-manifold M on which the theory is defined. The partition function

depends only on M, the gauge group G, the Chern-Simons coupling K, and a choice of

framing of the manifold [30]. Other gauge-invariant observables of this theory are expecta-

tion values of path-ordered integrals TrRP exp(
∮
K

A) around a closed path (knot) K in M,

with the trace taken in some irreducible representation R of G. More generally, one may

consider Wilson lines on a link comprising several, possibly interconnected, knots, each

associated with its own representation. Expectation values of these Wilson lines (together

with a choice of framing) are topological invariants of the knots and links in M, and are

related to well-known knot polynomials.

Observables of the Chern-Simons theory may be expressed in terms of quantities of

the related ĝK WZW model. For example, consider Chern-Simons theory on the manifold

M = Σg × S1, where Σg is a genus g Riemann surface. The expectation value of n vertical

lines (i.e. wrapped around S1) in Σg × S1, carrying representations Ri, is [30, 32, 33, 9]

WR1...Rn [Σg × S1, G,K] =
∑

R

S2−n−2g
0R

n∏

i=1

SRRi
(4.1)

where SRR′ is the modular transformation matrix of the ĝK WZW model, the sum is over

integrable representations of ĝK , and 0 denotes the identity representation. Equation (4.1)

will serve as a building block for observables of Chern-Simons theory on manifolds other

than Σg × S1.

4.1 Chern-Simons theory on Seifert manifolds

More generally, one may consider [18, 7, 9] Chern-Simons theory on a Seifert manifold

M(g,p), a circle bundle over Σg with first Chern class p. (The special case M(0,p) is the lens

space S3/ZZp, a circle bundle over S2.) The Seifert manifold M(g,p) may be obtained from

Σg × S1 by surgery, though different choices of surgery yield different framings of M(g,p).

Wilson line expectation values on M(g,p) may be computed by the methods of ref. [30].

The link consisting of n−1 circles carrying representations R2, . . . , Rn all linked to a single

circle carrying representation R1 has expectation value [9]

WR1...Rn [M(g,p), G,K] =
∑

R

K
(p)
R1RWRR2...Rn [Σg × S1, G,K]

=
∑

R

(K(p)S)R1RS2−n−2g
0R

n∏

i=2

SRRi
(4.2)

where the line carrying R1 is in the tubular neighborhood where surgery occurs, but the

other lines are not, and where K(p) is a matrix that depends on the framing of the manifold.

For p = 0 (the trivial circle bundle), K(0) = 1, and eq. (4.2) reduces to eq. (4.1).
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When g = 0 and p = 1, the Seifert manifold is just S3. For the canonical framing of

S3, the matrix K(1) is equal to the modular transformation matrix S [30], so that eq. (4.2)

with n = 2 yields the Hopf link on S3

WR1R2 [S
3, G,K] = SR̄1R2

= SR1R̄2
= S∗

R1R2
(canonical framing) (4.3)

where R̄ is the representation conjugate to R, and we have used S2 = C (where C is the

charge conjugation matrix), C2 = 1, and S−1 = S† = S∗.

A different choice of framing for M(g,p), called Seifert framing, was considered in

refs. [18, 7, 9]. For this framing, one has K(p) = (TST )p [9]. Using the relation (ST )3 = S2,

one can rewrite K(p) = (ST−1S−1)p = ST−pS−1. In Seifert framing, the expectation

value (4.2) on M(g,p) becomes

WR1...Rn [M(g,p), G,K] =
∑

R

T−p
RRS2−n−2g

0R

n∏

i=1

SRRi
(Seifert framing). (4.4)

Note that, in Seifert framing, the Hopf link expectation value on the three-sphere

WR1R2[S
3, G,K] = (ST−1S)R1R2 = (TSTC)R1R2

= TR1R1SR1R̄2
TR̄2R̄2

(Seifert framing)

(4.5)

differs from the result in canonical framing (4.3) by the representation-dependent phase

factors in T .

4.2 Level-rank duality of SU(N) Chern-Simons theory on S3

We now review level-rank duality of observables of the SU(N) Chern-Simons theory on

S3 [13, 19]–[22]. These results can be obtained by using the expression (4.3) for the Hopf

link expectation value on S3 (with canonical framing) together with the relation (3.8)

between the modular transformation matrices of ŝu(N)K and ŝu(K)N . For example, the

partition functions of level-K SU(N) Chern-Simons theory and level-N SU(K) Chern-

Simons theory on S3 (with canonical framing) are related by [19]

ZCS[S
3,SU(N),K] =

√
K

N
ZCS[S

3,SU(K), N ] . (4.6)

Also, the expectation values of unknots on S3 (normalized by the partition function) of

level-rank-dual representations are equal

WR[S3,SU(N),K]

ZCS[S3,SU(N),K]
=

W eR[S3,SU(K), N ]

ZCS[S3,SU(K), N ]
(4.7)

and more generally, one can show by using skein relations that the normalized expectation

value of a knot taken in representation R of SU(N) is equal to the expectation value of

the mirror-image knot taken in representation R̃ of SU(K) [19, 20]. Finally, normalized

expectation values of Hopf links of level-rank-dual theories are related by [13]

WR1R2 [S
3,SU(N),K]

ZCS[S3,SU(N),K]
= e−2πir1r2/NK

W ∗
eR1

eR2
[S3,SU(K), N ]

ZCS[S3,SU(K), N ]
(4.8)

where complex conjugation corresponds to the mirror-image Hopf link. Note that, for

SU(N), duality only holds because cominimally-equivalent unknots have identical expec-

tation values on S3.
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4.3 Level-rank duality of U(N) and Sp(n) CS theory on Seifert manifolds

Level-rank duality of SU(N) Chern-Simons observables does not generally hold on man-

ifolds other than S3, because the level-rank-dual map for ŝu(N)K is between cominimal

equivalence classes. As the simplest example, consider the unknot expectation value on

M(0,0) = S2 × S1:

WR[S2 × S1,SU(N),K] = C0R. (4.9)

This vanishes unless R is the identity representation, but if R corresponds to the cominimal

representation σ(0), the level-rank-dual unknot does not vanish because R̃ is equivalent to

the identity representation.

Unlike SU(N) Chern-Simons theory, U(N) Chern-Simons theory on M(g,p) does exhibit

level-rank duality (for even p), as we will now see. This is because, as shown in section

3, level-rank duality of U(N) WZW models involves a map between primary fields, not

cominimal equivalence classes thereof. (As before, however, we must restrict ourselves

to odd values of N and K.) By combining the link expectation value (4.4) on a Seifert

manifold (in Seifert framing) with the level-rank-dual relationships (3.5) and (3.9) for

modular transformation matrices of û(N)K,N(K+N), we find

WR1...Rn [M(g,p),U(N),K] =
∑

R

T−p
RRS2−n−2g

0R

n∏

i=1

SRRi

= eπip(KN+1)/12
∑

eR

(−1)pQT̃ ∗−p
eR eR S̃∗2−n−2g

0 eR

n∏

i=1

S̃∗
eR eRi

. (4.10)

When p is odd, the factor of (−1)Q in the relation (3.5) introduces an unwanted relative

sign between the terms in the sum. For even p, however, the sign is absent, and we obtain

the level-rank-dual relation

WR1...Rn [M(g,p),U(N),K] = eπip(KN+1)/12W ∗
eR1... eRn

[M(g,p),U(K), N ] (p even) (4.11)

between these link expectation values in U(N) and U(K) Chern-Simons theories on a

Seifert manifold (in Seifert framing). The cases n = 0, n = 1, and n = 2 of eq. (4.11) yield

level-rank-dual relationships between partition functions, unknot expectation values, and

Hopf link expectation values on a Seifert manifold respectively.

A similar relation

WR1...Rm [M(g,p),Sp(n), k] = eπipnk/6 W ∗
eR1... eRm

[M(g,p),Sp(k), n] (p even) (4.12)

holds between expectation values of Sp(n) and Sp(k) Chern-Simons theories on M(g,p)

(for p even), because level-rank duality of ŝp(n)k WZW models [13] is also a map between

representations.

5. 2d U(N) qYM theory and N ↔ K duality

The two-dimensional q-deformed U(N) Yang-Mills theory that arises [2, 3] from compu-

tations of bound states of D-branes on a fibration over a Riemann surface Σg has a close
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connection to both U(N) Chern-Simons theory on a Seifert manifold [3, 34, 5, 18, 7, 9] and

to the û(N)K,N(K+N) WZW model. In particular, as we will show, when q = e2πi/(N+K),

the U(N) qYM partition function can be written as a sum over a finite subset of U(N)

representations. Consequently, the U(N) qYM theory exhibits a level-rank-type duality

under N ↔ K.

The partition function of the two-dimensional q-deformed U(N) Yang-Mills theory on

a genus g Riemann surface Σg is given (up to an overall normalization factor) by [3]

ZqYM[U(N), q, p, θ] ∼
∑

R

(dimq R)2−2g q−
1
2
pC2(R)eiθC1(R) (5.1)

where the sum is over all representations R = (R,Q) of U(N), whose Young tableaux have

row lengths ℓ̄i obeying −∞ < ℓ̄N ≤ ℓ̄N−1 ≤ · · · ≤ ℓ̄1 < ∞. In eq. (5.1), p is related to the

coupling in the YM action,7 C2(R) is the quadratic Casimir (A.7), C1(R) = Q =
∑N

i=1 ℓ̄i,

and dimq R is the “quantum dimension” of the representation R

dimq R =
∏

1≤i<j≤N

[ℓ̄i − ℓ̄j + j − i]q
[j − i]q

where [x]q =
qx/2 − q−x/2

q1/2 − q−1/2
. (5.2)

Letting mi = ℓ̄i − i ∈ ZZ, we may rewrite eq. (5.1) as

ZqYM[U(N), q, p, θ] ∼
∑

mN <...<m1




∏

1≤i<j≤N

[mi − mj ]q
[j − i]q




2−2g

× (5.3)

q−
1
2
p

P
i[mi+

1
2
(N+1)]

2
+ 1

24
pN(N2−1)eiθ

P
i[mi+

1
2
(N+1)] .

The invariance of eq. (5.3) under permutations of the mi allows us to extend the sum to

all mi (modulo a factor of N !), omitting the locus where two or more of the mi are equal.

The resulting expression is actually the result of a path integral derivation of the 2d qYM

partition function [3], in which terms with mi = mj correspond to singular points that give

no contribution to the path integral [33].

Next, we show that when q = e2πi/(N+K), with K and p both integer-valued, the

infinite sum over representations in (5.1) either vanishes or is proportional to a sum over a

finite subset of U(N) representations, namely those whose tableaux have no more than K

columns.8 First, when q = e2πi/(N+K), one has [x]q = sin( πx
N+K )/ sin( π

N+K ), so that terms

in which two mi’s differ by a multiple of N + K are singular, and should be omitted from

the sum (5.3) [33]. The resulting partition function is

ZqYM[U(N), e2πi/(N+K), p, θ] ∼
∑

mi∈ZZ

′




∏

1≤i<j≤N

[mi − mj]q
[j − i]q




2−2g

× (5.4)

exp

{
− πip

N + K

∑

i

[
mi +

1

2
(N + 1)

]2

+
πipN(N2 − 1)

12(N + K)
+ iθ

∑

i

[
mi +

1

2
(N + 1)

]}

7Our p is opposite in sign from that in refs. [3, 7] and the same as that in ref. [9].
8When K is not an integer, there is no truncation of representations [3].
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where the prime on the sum denotes the omission of the locus mi = mj mod N + K for all

i 6= j.

Next, observe that under mi → mi +N +K (with the other mj fixed), the summand is

multiplied by e−iπp(K+1)+i(N+K)θ, provided p ∈ ZZ. If θ 6= πp(K+1)
N+K mod 2π

N+K , the resulting

infinite sum over phases causes the partition function to vanish. On the other hand, if

θ = πp(K+1)
N+K mod 2π

N+K , the summand is invariant under mi → mi + N + K, and so the

sum may be restricted (modulo an infinite factor) to the hypercube −N ≤ mi < K − 1,

still omitting terms in which any two mi’s are equal. Finally, due to the invariance under

permutations of mi, the sum may be restricted to −N ≤ mN < · · · < m1 ≤ K − 1, which

corresponds to 0 ≤ ℓ̄N ≤ ℓ̄N−1 ≤ · · · ≤ ℓ̄1 ≤ K. Hence

ZqYM

[
U(N), e2πi/(N+K), p, θ

]
=

∑

0≤ℓ̄N≤···≤ℓ̄1≤K

(dimq R)2−2g q−
1
2
pC2(R)eiθC1(R) (5.5)

provided p ∈ ZZ and θ = πp(K+1)
N+K mod 2π

N+K . To summarize, when these conditions hold,

the 2d U(N) qYM partition function (5.1) is proportional to eq. (5.5), which has the same

form but is restricted to Young tableaux with no more than K columns. This result holds

for both even and odd K; the allowed set of Young tableaux corresponds in the latter case

to primary fields of û(N)K,N(K+N).

We note that the analogous truncation does not occur in the case of the SU(N)

qYM partition function even for q = e2πi/(N+K); the extra term −r2/N in the SU(N)

Casimir (A.2) ruins the invariance of the summand under mi → mi + N + K in that case.

As we saw in section 2, when K is odd, the set of Young tableaux with up to N

rows and K columns precisely corresponds to the set of primary fields of û(N)K,N(K+N).

Moreover, the quantities in eq. (5.5) may be expressed in terms of modular transformation

matrices (2.15) and (2.16) of û(N)K,N(K+N), namely q
1
2
C2(R) = TRR/T00 and

dimq R =
∏

1≤i<j≤N

[ℓ̄i−ℓ̄j+j−i]q
[j − i]q

=
∏

1≤i<j≤N

[ℓi−ℓj +j−i]q
[j − i]q

= dimq R =

(
S0R

S00

)

bsu(N)K

=

(
S0R

S00

)

bu(N)K,N(K+N)

(5.6)

where ℓi = ℓ̄i − ℓ̄N are the row lengths of the SU(N) representation R, and we have used

eq. (2.15). Hence, when K is odd and θ = 2πt/(N + K) with t ∈ ZZ, the U(N) qYM

partition function (5.5) may be expressed as

ZqYM

[
U(N), e2πi/(N+K), p,

2πt

N+K

]
=T p

00S
2g−2
00

∑

R integrable

S2−2g
0R T−p

RRe2πitQ/(N+K) (K odd) .

(5.7)

Finally, as observed in refs. [3, 5, 18, 7, 9], the U(N) qYM partition function (for q =

e2πi/(N+K) and θ = 0) may be expressed in terms of the level-K U(N) Chern-Simons

partition function on M(g,p) with Seifert framing (4.4)

ZqYM[U(N), e2πi/(N+K), p, 0] = T p
00S

2g−2
00 ZCS[M(g,p),U(N),K] (K odd) . (5.8)
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5.1 N ↔ K duality of the 2d U(N) qYM theory

With the 2d U(N) qYM partition function in the form (5.7), duality under N ↔ K becomes

manifest by using eqs. (3.5) and (3.9):

ZqYM

[
U(N), e2πi/(N+K), p,

2πt

N+K

]
=Z∗

qYM

[
U(K), e2πi/(N+K), p,

2πt

N+K
+πp

]
(N,K odd) .

(5.9)

That is, the 2d U(N) qYM partition function is the complex conjugate of the 2d U(K)

qYM partition function, provided q = e2πi/(N+K) and θ = 0 mod 2π/(N + K), with N

and K both odd. When p is odd, θ must be shifted in order to compensate for the

representation-dependent minus sign in (3.5), but when p is even, no shift is necessary.

It has been shown [7] that a certain class of Wilson line observables in qYM theory

(for q = e2πi/(N+K)) are proportional to the expectation values of links of Chern-Simons

theory on M(g,p). For K odd, these Wilson line observables in U(N) qYM theory may be

expressed in terms of modular transformation matrices of û(N)K,N(K+N):

WR1...Rn

[
U(N), e2πi/(N+K), p,

2πt

N+K

]
∼

∑

R integrable

S2−2g−n
0R T−p

RRe2πitQ/(N+K)
n∏

i=1

SRRi
(K odd) .

(5.10)

(The sum over all u(N) representations restricts to a sum over a finite subset of represen-

tations under the same conditions as before.) Once again, eqs. (3.5) and (3.9) can be used

to show that these observables, like the partition function, exhibit N ↔ K duality (5.9).

6. Conclusions

In this paper we have examined three different exactly-soluble gauge theories in two and

three dimensions with gauge group U(N), and the N ↔ K dualities that these theories

exhibit.

First, we examined the U(N) WZW model, whose affine Lie algebra is

û(N)K,N(K+N) ≡ [ŝu(N)K × û(1)N(K+N)]/ZZN . The primary fields of this theory are

given by equivalence classes of representations of ŝu(N)K × û(1)N(K+N). These equiva-

lence classes are only defined when K is odd, and are in one-to-one correspondence with

Young tableaux with up to N rows and K columns. By explicitly considering the affine

characters of the primary fields, we derived the modular transformation matrices of the

û(N)K,N(K+N) WZW model. We then showed that the û(N)K,N(K+N) and û(K)N,K(K+N)

WZW models are level-rank dual (when N and K are odd), with a one-to-one correspon-

dence between the primary fields of these theories. This is simpler than the level-rank

duality between ŝu(N)K and ŝu(K)N WZW models, where the correspondence is between

the simple-current orbits of primary fields.

Next we considered U(N) Chern-Simons theories on Seifert manifolds: circle bundles

over Σg with first Chern class p. The partition function and knot and link expectation

values of this theory were expressed (using surgery) in terms of the û(N)K,N(K+N) modular

transformation matrices. The level-rank duality of the latter was used to show the N ↔ K
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duality of the Chern-Simons observables, for N and K odd, and p even. A similar result

was shown for Sp(n) Chern-Simons theory on Seifert manifolds.

Finally, we considered two-dimensional q-deformed U(N) Yang-Mills theory. We

showed that when q = e2πi/(N+K), the partition function may be expressed in terms of

a finite sum over u(N) representations. This result, together with the level-rank duality

of the û(N)K,N(K+N) WZW model, was then used to show that the 2d U(N) qYM the-

ory exhibits a level-rank-type duality under N ↔ K (for N and K both odd), provided

q = e2πi/(N+K) and θ = 0 mod 2π/(N + K).

The N ↔ K duality of q-deformed YM theory discussed in this paper is not immedi-

ately relevant to the counting of bound states of BPS black holes in string theory because

in that case the deformation parameter q is real, not a pure phase. On the other hand,

level-rank of Chern-Simons observables could have important implications for large-N du-

alities of Chern-Simons theories since it relates the large-N limit to the large-K limit of

finite N observables.

A. Representations of finite-dimensional and affine Lie algebras

In this appendix, we summarize various results for finite-dimensional and affine Lie algebras

needed in the main part of the paper.

A.1 Representations of u(N)

The su(N) generators T a (a = 1, . . . , N2−1) satisfy [T a, T b] = ifab
cT

c, and the Killing form

is defined as gab = Tr(T aT b), with the trace taken in the defining representation of su(N).

(With this normalization of gab, the roots of su(N) have length two.) A representation

R of su(N) is characterized by a Young tableau with row lengths ℓi (i = 1, . . . , N − 1)

satisfying ℓ1 ≥ ℓ2 ≥ · · · ℓN−1 ≥ 0, and with number of boxes r =
∑N−1

i=1 ℓi. The quadratic

Casimir C2(R) of the su(N) representation R is given by

N2−1∑

a,b=1

gabT
a
RT b

R = C2(R) 1ldim R (A.1)

C2(R) = Nr + T (R) − r2

N
(A.2)

T (R) =

N−1∑

i=1

ℓi(ℓi − 2i + 1) (A.3)

where gab is the inverse of gab.

Representations of u(N) = [su(N) × u(1)]/ZZN are those representations (R,Q) of

su(N) × u(1) that satisfy Q = r mod N . Here, Q is the eigenvalue of the u(1) generator

T 0, which is normalized so that the defining representation has Q = 1, implying that
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g00 = N . The quadratic Casimir of the u(N) representation (R,Q) is then

N2−1∑

a,b=0

gabT
a
(R,Q)T

b
(R,Q) = C2(R,Q) 1ldim R (A.4)

C2(R,Q) = C2(R) +
Q2

N
= Nr + T (R) + 2sr + Ns2 (A.5)

Q = r + Ns . (A.6)

One can characterize the u(N) representation (R,Q) by an extended Young tableau R,

obtained by prepending s columns of N boxes to the Young tableau for R, giving a tableau

with row lengths ℓ̄i = ℓi + s (i = 1, . . . , N − 1) and ℓ̄N = s, and with number of boxes

Q =
∑N

i=1 ℓ̄i. Since s ∈ ZZ, the ℓ̄i may be negative, in which case one can represent the

tableau using “anti-boxes”; cf. appendix D of ref. [6]. The quadratic Casimir (A.5) may be

re-expressed as

C2(R) = C2(R,Q) = NQ + T (R) (A.7)

T (R) =
N∑

i=1

ℓ̄i(ℓ̄i − 2i + 1) . (A.8)

A.2 Representations of ŝu(N)K and û(1)K ′

Next, we review the representations of the affine Lie algebras ŝu(N)K and û(1)K ′ .

The generators of ŝu(N)K satisfy

[Ja
m, Jb

n] = ifab
cJ

c
m+n + Kgabmδm+n (A.9)

where the level, K, is integer-valued when gab is normalized as above. Integrable highest-

weight representations of ŝu(N)K are characterized by su(N) representations R whose

Young tableaux have ℓ1 ≤ K. This representation has conformal weight

hR =
1
2C2(R)

K + N
(A.10)

and affine character

χR(τ) = Tr
(
qL0−c/24

)
= qhR−c/24(dim R + · · ·), q = e2πiτ (A.11)

where the central charge is c = K(N2 − 1)/(K + N). The characters of integrable highest-

weight representations transform into one another under the modular transformation τ →
−1/τ :

χR(−1/τ) =
∑

R′

SRR′ χR′(τ) (A.12)

and into themselves, up to a phase, under τ → τ + 1:

χR(τ + 1) =
∑

R′

TRR′ χR′(τ), TRR′ = e2πi(hR−c/24)δRR′ . (A.13)
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Integrable highest-weight representations of ŝu(N)K may be grouped into cominimal equiv-

alence classes (or simple-current orbits) of order N (or some divisor of N). These classes

are generated by the simple current σ, which rotates the Dynkin indices of the Dynkin

diagram of ŝu(N)K . In terms of Young tableaux, σ(R) is obtained by adding a row of K

boxes to the top of the Young tableau of R, and stripping off any columns of length N that

may result. The conformal weights of cominimally-equivalent representations are related

by

hσ(R) = hR +
NK − K − 2r

2N
(A.14)

and the modular transformation matrix9 obeys

Sσn(R)R′ = e2πinr′/NSRR′ (A.15)

where r′ is the number of boxes of the tableau representing R′.

The generators of û(1)K ′ satisfy

[J0
m, J0

n] = K ′mδm+n . (A.16)

Highest-weight representations of this algebra are labelled by their J0
0 eigenvalue Q, and

have conformal weights

h′
Q =

1
2Q2

K ′
(A.17)

and affine characters

χ′
Q(τ) =

qh′
Q

η(τ)
= qh′

Q
− 1

24

∞∏

n=1

1

(1 − qn)
. (A.18)
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